
©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

Wireless Security and Monitoring for the Home Network
Raymond Turner
Version 1.4b GIAC GSEC Practical Assignment
August 21, 2003

Abstract

Marketing trends estimate that by the end of 2006, 21 million homes will have
implemented a Local Area Network (LAN), and of those 21 million homes 65%
will use wireless solutions. [1] The rapidly decreasing cost for wireless devices
and the proliferation of wireless solutions provided by the major Internet Service
Providers seems to clearly support these growth estimates.

Home wireless users and security professionals the world over are conceptually
trying to solve similar problems. They both need to find a way to provide a secure
working environment. There are two distinct approaches to this security
dilemma, security prevention, and security detection. An example of security
prevention would be a firewall device that restricts specific traffic or ports to or
from specific hosts. Although this provides protection against unauthorized traffic,
it has no means for determining if an attack is being attempted via an authorized
port. An example of security detection would be an IDS (Intrusion Detection
System) device that contains a signature to identify a specific attack via
authorized or unauthorized ports. [2] Security professionals often have the
technology and resources to develop security solutions based on prevention,
detection, or a combination of the two. However, home wireless users do not
have the luxury of evaluating their security approach since the guidelines and
wireless devices marketed to the home user demographic have an overwhelming
dependency on preventative mechanisms. The first part of this document will
briefly review the basic home access point security mechanisms, and their
weaknesses. The second part will cover the implementation of a script to detect,
identify, and provide notification of users on a home wireless network, as an
attempt at security detection.

Preventative Wireless Security

802.11b devices seem to have the market share of home wireless solutions. This
is most likely contributed to the steady decrease in the cost for these devices.
The top selling 802.11b wireless access points offer basic wireless security
features such as WEP, SSID Broadcast, and MAC Filtering. [3] We know from
research that users are not implementing these features, [4] and even if they
were, a quick review of these basic security features and their weaknesses will
help us understand the concerns with relying solely on a preventative approach
to wireless security.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

WEP

Wired networks offer the luxury of physical boundaries, users wishing to join a
wired network must find somewhere to plug-in. It is highly unlikely that a random
user on the street will walk in your front door, sit down at your desk, and plug into
the hub connected to you cable modem. Wireless networks however do not have
this physical connectivity restriction. Neighbors and casual passer bys could
connect to your wireless access point without much resistance. The IEEE 802.11
standard specifies WEP otherwise known as Wired Equivalent Privacy for data
protection on 802.11 networks. [5] This is proposed to operate as the wireless
equivalent to the physical security provided by wired networks. The WEP
encryption scheme uses shared keys for the encryption and decryption of the
frames passed across a Wireless LAN (WLAN). [6] Some basic rules for
implementing WEP include:

1. Turn WEP on. It is not enabled by default and will require configuration on
both the client and the access point.

2. Users should define the strongest encryption supported by both the client
and the access point.

3. If possible users should change the default cryptographic key, and then
schedule key changes daily or weekly.[7]

Although WEP is based on the robust RC4 symmetric key algorithm, the flaws in
the implementation of WEP have been well documented. [8] These flaws allow a
malicious user who collects enough WEP encrypted frames on given network to
identify shared values among the frames and ultimately determine the shared
key. It is not secret that WEP has its faults but its implementation is a key piece
to a defense in depth approach to home wireless security.

SSID Broadcast

SSID or Service Set Identifier is a unique identifier specified in the header of
wireless packets to act as a password for client connectivity to a wireless access
point. This is commonly referred to as the wireless network name, and is
broadcast on the wireless network by the access point.[9] The following are
guidelines for configuring SSID Broadcast on an AP.

1. Unlike WEP turn the SSID Broadcast off if possible
2. Change the default SSID name
3. Increase beacon interval to the maximum setting to make passive

scanning more difficult. [7]

The above guidelines only provide protection against the casual snooper.
Increasing the beacon interval makes for a quieter access point, and increases
the time between each SSID transmission, but as noted the access point still
transmits the SSID. While changing the default SSID helps mitigate against

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

accidental associations with your neighbors access point, which more often than
not happens to be manufactured by the same vendor. It also prevents users from
easily guessing the SSID when SSID broadcast is disabled. However malicious
users passively watching communication on a wireless network can still
determine a changed SSID since it transmitted in every associate request and
response frame. The features used to obfuscate a wireless network SSID does
not provide much in the way of security however it is another key piece in a
layered approach to wireless security.

MAC Filtering

A MAC (Media Access Control) is the unique hardware address assigned to
every network adapter. The MAC address uniquely identifies each host on a
wireless network. MAC Filtering is the process of creating an Access Control List
(ACL) to specifically permit or deny certain MAC addresses from connecting to
the AP. Listed below are a few important tips about MAC Filtering.

1. Enable MAC Filtering, it won’t work otherwise.
2. Since home networks are generally limited to a handful of devices it is

likely to be more efficient to create a permit ACL for the known devices on
your network rather than a deny ACL for unknown devices.

MAC Filtering does not come without its issues. Address Resolution Protocol or
ARP is the protocol used to determine the MAC to IP pairing for the hosts on the
wireless network. ARP information is passed in the clear between the clients and
the AP. It is only a matter time before a malicious user will discover a MAC
address that is permitted to connect to the access point. Some of the most
common ARP related attacks are sniffing, hijacking, broadcasting, DOS, and
cloning. [10] All is not lost, and although MAC Filtering appears to be no better at
protecting wireless networks than WEP and SSID Broadcast, it is a key element
in the layered approach to wireless security.

Physical Architecture

The physical implementation of a wireless network can sometimes be used as a
method of preventative security. Wireless access points are often considered for
implementation in an environment in which a wired network already exists. In this
scenario the wireless network can be implemented as an extension of a wired
network, or as a separate network or DMZ (De-Militarized Zone).

As an extension of a wired network, little work will need to be done to allow wired
and wireless hosts to communication with each other. However the security
implications associated with a wireless network would provide a risk to a wired
network by circumventing the need for physical connectivity. As a separate
network or DMZ the segregation of the two networks, and the restriction of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

communication between them could be used to maintain the integrity of the wired
network.

Although it seems futile to implement the above wireless security mechanisms, it
is safe say that any security is better than none. While basic wireless security
can be compromised, the proliferation of wireless devices and the simple act of
implementing WEP, SSID Broadcast, and MAC Filtering, may prompt a malicious
user to seek an easier target.

Monitoring or Wireless Security Detection

Most users will never know if someone has accessed their wireless network. The
rest of this document will outline an exercise in implementing a simple script to
provide a method of monitoring, and reporting wireless network access to the
home administrator.

The following assumptions are used in this exercise and should help provide a
template for implementing a robust home wireless security solution in which the
script will operate.

1. A segregated wireless and wired network will be implemented.
2. All preventative wireless security mechanisms (WEP, SSID Broadcast,

MAC Filtering) have been implemented.
3. A firewall provides separation between the two networks.
4. The firewall provides Internet access for each network.
5. Communication between the two networks is prohibited.
6. The firewall will provide addressing for each network.
7. The firewall is used as the monitoring device.

Wired LAN

Wireless
LAN

ISP

Firewall
AP

Switch

DSL or Cable
Modem

 Network topology diagram

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

Based on the assumptions for this exercise the following tasks are required to
support the development of the script:

1. Build a Unix firewall
2. Install the packages used by the script
3. Create and implement the monitoring script

Firewall

For this exercise I have implemented an OpenBSD operating system using pf as
the firewall software. The OpenBSD project was chosen for its proactive security
stance, and their standard “Only one remote hole in the default install, in more
than 7 years!” The instructions for a default install of OpenBSD can be obtained
at the OpenBSD’s website. [11] Once the default install of OpenBSD is done, the
following steps will need to be completed to support the wireless architecture.
1. Disable inetd.conf. This file is the Internet server configuration database and

contains the network services like ftp, telnet, and echo. Since SSH provides a
more secure method of network connectivity to this box there should not be
an instance in which any of the services provided by inetd.conf will be
needed. While this is not a necessary step in completing this exercise, it will
provide additional security. The following is the easiest way to disable
inetd.conf.

A. Make a copy of the original inetd.conf file and then create a new empty
inetd.conf file

cd /etc
mv inetd.conf inetd.conf.dist
touch inetd.conf

B. In /etc/rc.conf set inetd to equal NO

set the following to "YES" to turn them on
rwhod=NO
nfs_server=NO # see sysctl.conf for nfs client configuration
lockd=NO
gated=NO
amd=NO
pf=YES # Packet filter / NAT
portmap=NO # Note: inetd(8) rpc services need portmap too
inetd=NO # almost always needed
check_quotas=YES # NO may be desirable in some YP environments
ntpd=YES # run ntpd if it exists

krb5_master_kdc=NO # KerberosV master KDC. Run 'info heimdal' for
help.
krb5_slave_kdc=NO # KerberosV slave KDC.
afs=NO # mount and run afs

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

2. Configure the firewall software. Instructions for configuring pf on OpenBSD
can be obtained at the OpenBSD website. [12] The pf user’s guide also
provides a sample rule set.

3. Configure the firewall to be the DHCP server on the wireless network. Both
the firewall and most access points can be configured as a DHCP server.
Choosing the firewall for the DHCP server will give you more control and
future options. For instance perhaps you would like to modify the monitoring
script for future interactions with the DHCP leases file. This could allow you to
control the issuing of IP leases to trusted hosts only, or to end the lease of a
suspect host. The instructions for configuring an OpenBSD DHCP server can
be obtained at the OpenBSD website. [13] When configuring the IP ranges in
the DHCP server remember that limiting the number of lease addresses can
help prevent the casual freeloader from obtaining an IP address on the
wireless network.

Packages

All the packages required to create the monitoring script are available in the
OpenBSD ports tree.

1. Download the ports tree from OpenBSD and extract them in the /usr directory.
Be sure to replace release# with the release number of the OpenBSD install.

cd /usr
ftp ftp://ftp.openbsd.org/pub/OpenBSD/release#/ports.tar.gz
tar zxvf ports.tar.gz
rm ports.tar.gz

2. Install Arpwatch. Arpwatch is a handy utility which monitors MAC to IP
pairings on a network. It maintains the pairing information in a .dat file and is
configured to report specific changes to syslog and root via email.

cd /usr/ports/net/arpwatch
make
make install

 To make sure that Arpwatch starts on boot append /etc/rc.local with:

if [-x /usr/local/sbin/arpwatch]; then
 echo -n ' arpwatch'; /usr/local/sbin/arpwatch –i fxp0
fi

Replace fxp0 with the firewall interface that will reside in the wireless network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

3. Install Fping. Fping Is a utility similar to ping which uses ICMP echo request
to see if a host is up. Fping was chosen because its output is easily parsed,
making it a good candidate for use in scripts.

cd /usr/ports/net/fping
make
make install

4. Install Xprobe. Xprobe is an active OS fingerprinting utility, using ICMP for OS
discovery. Xprobe was chosen because it is fast, efficient, and seems to be
more consistent at accurately fingerprinting an OS when compared to nmap.

cd /usr/ports/net/xprobe
make
make install

5. Install Nmap. Nmap is a network mapping and security auditing tool, which
uses raw packets to obtain information about hosts on the network. Nmap
was chosen to help identify interesting information about non-Windows hosts.
If OpenBSD was installed without x11 then make sure you edit the Makefile in
the /usr/ports/net/nmap and specify no_x11 for FLAVOR?= before you run
make make install.

cd /usr/ports/net/nmap
vi Makefile
FLAVORS= no_x11
FLAVOR?= no_x11

cd /usr/ports/net/nmap
make
make install

6. Install NBTScan. NBTScan is a utility used to obtain NetBios name
information, by sending NetBios status queries. NBTScan was chosen
because it identifies interesting information about Windows hosts on the
network in simple format.

cd /usr/ports/net/nbtscan
make
make install

Script

The primary goals of the script are:
1. Provide a way to identify new host on a wireless network
2. Collect information that is useful in identifying hosts. This information

might also in determining the validity of the hosts.
3. Provide a method of notification to the home administrator

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

The script is designed to take the MAC to IP pairing collected by arpwatch and
determine if any of those hosts are currently active on the wireless network. The
script will then fingerprint the live hosts and use different utilities based on OS to
collect interesting information about each host. After this information is collected
it will be emailed to a specified recipient. The following pages will first break
down the script to show how each part works, followed by a listing of the entire
script at the end. Since this script is short and simple, Bourne shell will be used
as the scripting language. Future enhancements such as interactions with DHCP
leases or pf rule sets may necessitate the need to use a more featured scripting
language like perl.

Create the script in the arpwatch directory to keep all output in one place. The
script has been broken out into six different sections.

1. The following section will provide the mechanism for collecting the MAC to IP
pairing used by the script.

#!/bin/sh

Get MAC to IP list from arp.dat for notify email
cd /var/arpwatch
echo "--" >> notify
echo "" >> notify
echo "MAC to IP from arp.dat" >> notify
cut -f 1,2 arp.dat | sort | grep -v 192.168.100.254 >> notify
echo "" >> notify
echo "--" >> notify

The first line of script specifies the interpreter preceded by #!, A second or empty
line was added to set the interpreter apart from the rest of the script.

The third line is commented out and is not executed by the script. Its purpose is
to provide a brief explanation of what the next few lines of the script are doing.

The fourth line tells the script to change to the working directory. The working
directory in this instance is the directory in which the script is located.

The fifth, sixth, and seventh lines are used to create the notify file. This is done
using the echo command which in this instance is also provides formatting of the
notify file.

Arpwatch stores Mac to IP pairing information in a file call arp.dat. Here is
sample output of an arp.dat file. The first two fields are MAC and IP, and the last
two are date and name resolution.

0:1:2:cc:5a:3 192.168.100.254 1061007749 firewall-int02
0:40:5:c1:5c:8 192.168.100.54 1061007726
0:30:65:1:ca:55 192.168.100.125 1059337083
0:30:65:1:ca:55 192.168.100.53 1059338280

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

0:40:5:c1:a8:5 192.168.100.50 1060912812

The eighth line uses the cut command to collect the MAC and IP pairing
information in the arp.dat file. In this instance cut is used with the –f option, which
will look for fields separated by tabs. The cut command also uses the 1,2 option
to select only the 1st and 2nd field. The grep command is used with the –v option
to remove the firewall interface from the list. This information is then appended to
the notify file.

The ninth and tenth lines provide additional formatting of the notify file to signal
the end of the collected arp.dat information.

2. This section of the script will take the IPs from the arp.dat file and determine
which hosts are active on the network.

Find live hosts in arp.dat
UPHOSTS=`cut -f 2 /var/arpwatch/arp.dat| grep -v 192.168.100.254`
for LINE in $UPHOSTS; do
/usr/local/sbin/fping -r 1 $LINE | grep alive | awk '{print $1}' >>
up.hosts
done

The first line again is commented out and will not be executed by the script. It
gives a brief description of what the next few lines of the script will do.

The second line uses the cut command to select the second field in the arp.dat
file to create the variable $UPHOSTS. This field in the arp.dat file contains the IP
portion of the MAC to IP pairings. The grep command with the –v option is used
to remove the firewall interface.

Fping is the core utility in next few lines of the script. It is used to determine if a
host is alive. Here is sample output of fping.

fping 192.168.100.50
192.168.100.50 is alive

The third, fourth, fifth, and sixth lines use a for command to tell the script to do
the following to each IP in the $UPHOSTS variable.

A. First, fping the IP. The –r option is used so that fping will only attempt to
retry pinging once. This is to minimize the amount of time it takes for an IP
that does not respond to timeout. Depending on the reliability of the
network being monitored, the value specified for the –r can be changed to
make sure all alive hosts are identified.

B. Next, the grep command is used to select only the hosts that are alive
from the fping.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

C. Last, the awk command with the print $1 option will append the first part of
the output to the up.hosts file. Looking at the sample above the first part
of the output would be the IP.

3. Xprobe, Nmap, and NBTScan are the core utilities for this section of the
script. Here is a sample of the default output of each.

Xprobe
xprobe 192.168.100.50
X probe ver. 0.0.2

Interface: xl0/192.168.100.254

LOG: Target: 192.168.100.50
LOG: Netmask: 255.255.255.255
LOG: probing: 192.168.100.50
LOG: [send]-> UDP to 192.168.100.50:32132
LOG: [98 bytes] sent, waiting for response.
LOG: [send]-> ICMP echo request to 192.168.100.50
LOG: [68 bytes] sent, waiting for response.
FINAL:[Novell (FreeBSD 4.3-current(?)]

Nmap
tidalgate# nmap 192.168.100.50

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on (192.168.100.50):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http

Nmap run completed -- 1 IP address (1 host up) scanned in 10 seconds

NBTScan
nbtscan 192.168.100.54
Doing NBT name scan for adresses from 192.168.100.54

IP address NetBIOS Name Server User MAC address

192.168.100.54 JOEPC <server> JDOE 0:40:5:c1:5c:8

The above utilities have been implemented in the script section below to probe
the IPs in the up.hosts file, and then based on the OS, report the interesting
information about the host.

Probe hosts that are up
HOSTIPS=`cat up.hosts`
for LINE in $HOSTIPS; do
echo "" >> notify
/usr/local/bin/xprobe -o probe.tmp $LINE >> /dev/null 2>&1
cat probe.tmp | grep Target >> notify
cat probe.tmp | grep FINAL >> notify
PROBE=`cat probe.tmp | grep Windows`

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

 if ["$PROBE" = ""]; then
 /usr/local/bin/nmap -n $LINE | grep -v -i nmap >> notify
 else
 /usr/local/bin/nbtscan -q $LINE >> notify
 echo "" >> notify
 fi
rm probe.tmp
echo "--" >> notify
done

The first line is commented out and will not be executed by the script. It describes
what the following lines of the script will be doing.

The second line uses the cat command to read all the entries in the up.hosts file
to create the $HOSTIPS variable.

The third through the seventeenth lines use another for command to tell the
scripts to do the following to each IP in the $HOSTIPS variable.

A. Xprobe the IP to determine the OS. Xprobe uses the –o option to specify
probe.tmp as a temporary logfile in which the probe results will be written.

B. Use the grep command to gather only the Target information that lists the
probed IP and the FINAL information that lists the OS of the probed IP
from the probe.tmp file. Then append this information to the notify file.

C. Check the probed IP to see if it is a windows box. The if statement tells the
script that if the probed IP is not a windows then run nmap against the IP
and append the results to the notify file. If the probed IP is a windows box
then the script will run nbtscan against the IP and append the results to
the notify file.

D. Clean up the probe.tmp file for the next entry in the HOSTIPS variable and
provide some formatting to the notify file with echo to signal the end of the
information about the probed IP.

4. The next section of the script will check for the notify.last file and will create it
if not found.

Check to see if notify.last exist
if [! -e "notify.last"]
then
 touch "notify.last"
fi

The first line is a commented out and will not be executed by the script. It
describes what the following lines of the script will be doing.

The second, third, fourth, and fifth lines use an if statement to tell the script to
see if the notify.last file exists. If the notify.last file does not then the script will
create the file. The notify.last file contains the information collected during the
last time the script was run.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

5. The next section is responsible for determining if there have been any
changes on the wireless network.

Compare notify with notify.last if nothing to compate then quite
COMP=`diff -q notify notify.last`
if [$COMP = ""]; then
 rm notify
 rm up.hosts
 exit 0
else
 cat notify | mail -s "ARP Traffic" root
 cat notify > notify.last
fi

The first line is a commented out and will not be executed by the script. It
describes what the following lines of the script will be doing.

The second line uses the diff command to determine if there are differences
between the notify file and the notify.last file. The –q option is used so that diff
only reports if the files differ, not the details of the differences. The output is used
to create the $COMP variable.

The third through the tenth lines use an if command to tell the script to do the
following.

A. If there is no difference between notify and notify.last then remove the
notify and up.hosts file and exit the script.

B. If there is a difference between notify and notify.last then use the cat
command to read the notify file and pipe the results into an email sent to a
specified recipient (i.e. home administrator) which happens to be root in
the above instance. The script will then use the cat command to overwrite
the notify.last file with the information in the notify file.

6. This section of the script is performing some remaining clean up.

Clean up
rm up.hosts
rm notify

The first line is a commented out and will not be executed by the script. It
describes what the following lines of the script will be doing.

The second and third lines remove the up.hosts and notify files so they can be
created from scratch the next time the script runs.

The following page shows the script in its entirety.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

#!/bin/sh

Get MAC to IP list from arp.dat for notify email
cd /var/arpwatch
echo "--" >> notify
echo "" >> notify
echo "MAC to IP from arp.dat" >> notify
cut -f 1,2 arp.dat | sort | grep -v 192.168.100.254 >> notify
echo "" >> notify
echo "--" >> notify

Find live hosts in arp.dat
UPHOSTS=`cut -f 2 /var/arpwatch/arp.dat| grep -v 192.168.100.254`
for LINE in $UPHOSTS; do
/usr/local/sbin/fping -r 1 $LINE | grep alive | awk '{print $1}' >>
up.hosts
done

Probe hosts that are up
HOSTIPS=`cat up.hosts`
for LINE in $HOSTIPS; do
echo "" >> notify
/usr/local/bin/xprobe -o probe.tmp $LINE >> /dev/null 2>&1
cat probe.tmp | grep Target >> notify
cat probe.tmp | grep FINAL >> notify
PROBE=`cat probe.tmp | grep Windows`
 if ["$PROBE" = ""]; then
 /usr/local/bin/nmap -n $LINE | grep -v -i nmap >> notify
 else
 /usr/local/bin/nbtscan -q $LINE >> notify
 echo "" >> notify
 fi
rm probe.tmp
echo "--" >> notify
done

Check to see if notify.last exist
if [! -e "notify.last"]
then
 touch "notify.last"
fi

Compare notify with notify.last if nothing to compate then quite
COMP=`diff -q notify notify.last`
if [$COMP = ""]; then
 rm notify
 rm up.hosts
 exit 0
else
 cat notify | mail -s "ARP Traffic" root
 cat notify > notify.last
fi

Clean up
rm up.hosts
rm notify

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

Once the script has been completed, the last step is to create a cron job so that it
runs on regularly scheduled interval. The frequency at which the script should be
run is a matter of preference. I found that a five minute interval keeps excess
network traffic to minimum but still provides a reasonable window for detecting
unwanted hosts.

Below is a sample of a notification email. The first part of the email includes the
MAC to IP pairing from the arp.dat file. This information allows you to review the
history of access to the wireless network. The second and third parts are an
NBTScan of a windows host, and an Nmap port scan of non-Windows host on
the wireless network. This is used to provide information about each host and
has the potential to be used for host validation. It is important to understand that
host validation is dependant upon an understanding of the wireless network and
the devices that will have access. Obviously if you don’t know that an authorized
user uses a Windows XP laptop named JOEPC with the username JDOE then
the notification email will not be useful in determining if a malicious user possibly
spoofed a valid MAC address.

--

MAC to IP from arp.dat
0:1:2:cc:5a:3 192.168.100.254
0:40:5:c1:5c:8 192.168.100.54
0:30:65:1:ca:55 192.168.100.125
0:30:65:1:ca:55 192.168.100.53
0:40:5:c1:a8:5 192.168.100.50

--

LOG: Target: 192.168.100.54
FINAL:[Windows 2k. SP1, SP2/Windows XP]
192.168.100.54 JOEPC <server> JDOE 00-40-05-c1-5c-8

--

LOG: Target: 192.168.100.50
FINAL:[Novell (FreeBSD 4.3-current(?)]

Interesting ports on (192.168.100.50):
(The 1600 ports scanned but not shown below are in state: closed)
Port State Service
80/tcp open http

--

Conclusion

This practicum reviewed security prevention and security detection options for
home wireless users. Although the monitoring script offered in this document
could be used to monitor home wired networks, the information carries more

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

weight in a wireless network due to the anonymity of wireless connections. [14]
Similar to the security issues with WEP, SSID Broadcast, and MAC Filtering, the
methodology used by the monitoring script for host validation is not without its
flaws. The script accomplishes the goal of providing a simple and cost effective
method of detection, identification, and notification of wireless hosts. The means
for developing a more robust method for host validation remains opened for
future revisions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

References

[1] Scherf, Kurt. “Trends and Outlook for Wireless Home Networks.” Parks
Associates. Aug 2002.
URL: http://www.parksassociates.com/inthePress/resources/resources.htm

[15] Deshon, Markus. “Intrusion Prevention versus Intrusion Detection”
SecureWorks.
URL:http://www.secureworks.net/techResourceCenter/fullTechArticle.php?article
=IpsVsIds

[7] Mitchell, Bradley “Top 6 802.11b Wireless Access Points for Home.”
About.com
URL:http://compnetworking.about.com/cs/wireless80211/tp/80211b_aps_home.h
tm

[2] Fisher, Ken. “Security Practicum: Home Wireless Security Practices.” Ars
Technica.
URL: http://www.arstechnica.com/paedia/w/wireless-security-howto/home-
802.11b-1.html

[8] IEEE “Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications.” ANSI/IEEE 1999
URL:http://www.techfree.com/802%20standards/802.11%20Wireless%20LAN/80
2.11 -1999.pdf

[10] Geier, Jim. “802.11 WEPL Concepts and Vulnerability” 802.11-Planet.com.
20 June, 2002
URL: http://www.80211-planet.com/tutorials/article.php/1368661

[4] Leres, Craig. “Arpwatch” Lawrence Berkeley National Laboratory Network
Research Group. Oct 2000
URL: ftp://ftp.ee.lbl.gov/arpwatch.tar.gz

[9] Fluhrer, Scott, Mantin, Itsik and Shamir, Adi “Weaknesses in the Key
Scheduling Algorithm of RC4” Lecture Notes in Computer Science. 2001
URL: http://downloads.securityfocus.com/library/rc4_ksaproc.pdf

[6] “SSID” Webopedia
URL: http://www.webopedia.com/TERM/S/SSID.html

[11] Whalen, Sean. “An Introduction to ARP Spoofing” Apr 2001
URL: http://www.node99.org/projects/arpspoof/arpspoof.pdf

[12] “4 – OpenBSD 3.3 Installation Guide” OpenBSD.org. Jul 9, 2003
URL: http://www.openbsd.org/faq/faq4.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.

[13] “PF: The OpenBSD Packet Filter” OpenBSD.org. Jun 29, 2003.
URL: http://www.openbsd.org/faq/pf/index.html

[14] “6.4.2 DHCP Server” OpenBSD.org. Jul 25, 2003.
URL: http://www.openbsd.org/faq/faq6.html#DHCP

[5] WECA “The Wireless Ethernet Compatibility Alliance” WLANA. Sept 7, 2001.
URL: http://www.wlana.org/learn/security.htm

